Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws

نویسندگان

  • Tianheng Chen
  • Chi-Wang Shu
چکیده

It is well known that semi-discrete high order discontinuous Galerkin (DG) methods satisfy cell entropy inequalities for the square entropy for both scalar conservation laws and symmetric hyperbolic systems, in any space dimension and for any triangulations [39, 36]. However, this property holds only for the square entropy and the integrations in the DG methods must be exact. It is significantly more difficult to design DG methods to satisfy entropy inequalities for a non-square convex entropy, and / or when the integration is approximated by a numerical quadrature. In this paper, we develop a unified framework for designing high order DG methods which will satisfy entropy inequalities for any given single convex entropy, through suitable numerical quadrature which is specific to this given entropy. Our framework applies from one-dimensional scalar cases all the way to multi-dimensional systems of conservation laws. For the one-dimensional case, our numerical quadrature is based on the methodology established in [5, 19, 20]. The main ingredients are summationby-parts (SBP) operators derived from Legendre Gauss-Lobatto quadrature, the entropy stable flux within elements, and the entropy stable flux at element interfaces. We then generalize the scheme to two-dimensional triangular meshes by constructing SBP operators on triangles based on a special quadrature rule. A local discontinuous Galerkin (LDG) type treatment is also incorporated to achieve the generalization to convection-diffusion equations. Extensive numerical experiments are performed to validate the accuracy and shock capturing efficacy of these entropy stable DG methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Runge–Kutta Discontinuous Galerkin Method for Conservation Laws V

This is the fifth paper in a series in which we construct and study the so-called Runge–Kutta discontinuous Galerkin method for numerically solving hyperbolic conservation laws. In this paper, we extend the method to multidimensional nonlinear systems of conservation laws. The algorithms are described and discussed, including algorithm formulation and practical implementation issues such as the...

متن کامل

Shock Detection and Limiting with Discontinuous Galerkin Methods for Hyperbolic Conservation Laws

We describe a strategy for detecting discontinuities and for limiting spurious oscillations near such discontinuities when solving hyperbolic systems of conservation laws by high-order discontinuous Galerkin methods. The approach is based on a strong superconvergence at the outflow boundary of each element in smooth regions of the flow. By detecting discontinuities in such variables as density ...

متن کامل

Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes

We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservati...

متن کامل

Arbitrary High Order Discontinuous Galerkin Schemes

In this paper we apply the ADER one step time discretization to the Discontinuous Galerkin framework for hyperbolic conservation laws. In the case of linear hyperbolic systems we obtain a quadrature-free explicit single-step scheme of arbitrary order of accuracy in space and time on Cartesian and triangular meshes. The ADERDG scheme does not need more memory than a first order explicit Euler ti...

متن کامل

The Runge{kutta Discontinuous Galerkin Method for Conservation Laws V: Multidimensional Systems

This is the fth paper in a series in which we construct and study the so-called RungeKutta Discontinuous Galerkin method for numerically solving hyperbolic conservation laws. In this paper, we extend the method to multidimensional nonlinear systems of conservation laws. The algorithms are described and discussed, including algorithm formulation and practical implementation issues such as the nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 345  شماره 

صفحات  -

تاریخ انتشار 2017